
Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 1

Parsing RDF documents using PHP
"An introduction to the RDF XML syntax and how
to parse RDF documents using the PHP version
of Repat."

(c) 2002 by Luis Argerich
lrargerich@yahoo.com

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 2

Introduction

RDF is a model to represent metadata defined by the W3C, it is a key resource in the
"semantic web" activities. RDF can be used to describe almost anything, web sites, pages,
documents, books, collections, soccer matches, etc. The XML Syntax of RDF defines a
vendor-neutral syntax to represent RDF information and exchange information between
systems. While RDF is great to express metadata parsing RDF is complicated since there're
many syntaxes allowed and covering all the valid syntactic representations requiere
sometimes a lot of code/time. In this tutorial we present the Rdf_class, a port of the RDF
repat parser to PHP. With this class you'll be able to parse any kind of RDF file from PHP
scripts and then you will be able to write all sort of RDF-enabled applications from
repositories to querying engines or data exchanging applications.

What is RDF?

RDF is a model for describing metadata.

TheW3C defines RDF:

"Resource Description Framework (RDF) is a foundation for processing metadata; it
provides interoperability between applications that exchange machine-understandable
information on the Web."

The RDF model is based on statements, an statement is used to say "something" about
resources. The "something" is referred as a "property" of the resource, so an statement
indicates the value of a resource's property. Let's see how the W3C defines Resource,
Properties and Statements.

Resources:

All things being described by RDF expressions are called resources. A resource may be an
entire Web page; such as the HTML document "http://www.w3.org/Overview.html" for
example. A resource may be a part of a Web page; e.g. a specific HTML or XML element
within the document source. A resource may also be a whole collection of pages; e.g. an
entire Web site. A resource may also be an object that is not directly accessible via the
Web; e.g. a printed book. Resources are always named by URIs plus optional anchor ids
(see [URI]). Anything can have a URI; the extensibility of URIs allows the introduction of
identifiers for any entity imaginable.

Properties:

http://www.ietf.org/internet-drafts/draft-fielding-uri-syntax-04.txt

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 3

A property is a specific aspect, characteristic, attribute, or relation used to describe a
resource. Each property has a specific meaning, defines its permitted values, the types of
resources it can describe, and its relationship with other properties. This document does not
address how the characteristics of properties are expressed; for such information, refer to
the RDF Schema specification).

Statements:

A specific resource together with a named property plus the value of that property for that
resource is an RDF statement. These three individual parts of a statement are called,
respectively, the subject, the predicate, and the object. The object of a statement (i.e., the
property value) can be another resource or it can be a literal; i.e., a resource (specified by a
URI) or a simple string or other primitive datatype defined by XML. In RDF terms, a
literal may have content that is XML markup but is not further evaluated by the RDF
processor. There are some syntactic restrictions on how markup in literals may be
expressed

Every statement has 3 parts:

• Subject
• Predicate
• Object

Staements, an example.

Example:

Ora Lassila is the creator of the resource http://www.w3.org/Home/Lassila.

This sentence has the following parts:

 Subject (Resource) http://www.w3.org/Home/Lassila
 Predicate (Property) Creator
 Object (literal) "Ora Lassila"

We can also see that RDF is also a model for describing graphs, where subjects and objects
are graph nodes and the predicates define directed arcs from a subject to an object, we
could have represented the above statement using the following graph:

http://www.w3.org/TR/1998/WD-rdf-schema

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 4

The XML syntax for RDF

RDF is a model for describing metadata and can be represented using several syntaxes, the
most used syntax for RDF is the XML syntax that we are going to describe below.

When RDF is represented using XML all the statements are enclosed in an RDF element,
the RDF element should have a namespace prefix pointing to the RDF syntax specification:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
</rdf:RDF>

In the XML syntax for RDF you "describe" resources indicating resource properties and
resource values, a "Description" element is used to describe a resource. Properties are
represented as XML elements and objects are the content of the properties, our sample
statement can be represented in XML as follows:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
 <rdf:Description about="http://www.w3.org/Home/Lassila">
 <s:Creator>Ora Lassila</s:Creator>
 </rdf:Description>
</rdf:RDF>

We can see that we describe the resource " http://www.w3.org/Home/Lassila" indicating
the name of the Creator. The property has the namespace prefix "s" and the namespace URI
may describe what the property says about the resource.

Parsing RDF documents using class_rdf_parser.php

The RDF parser class is a PHP por of "repat" an RDF parser based on Expat by Jason
Williams, the "C" version of repat uses the "C" version of expat while the PHP version of
repat uses, you guess, the expat parser bundled in PHP. (AKA XML extension).

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 5

Repat is an event-driven RDF parser, basically you define a handler for "RDF" statements
and then just parse the document, whenever the parser identifies an RDF statement yur
callback function will be called.

This is an example on how to use the class:

/* Put the URI of the document to parse here, you can use a file name if
you want too */
$base="http://luigi.melpomenia.com.ar/example5.rdf";

$statements=0;
$input = fopen($base,"r");
$rdf=new Rdf_parser();
$rdf->rdf_parser_create(NULL);
$rdf->rdf_set_user_data($statements);
$rdf->rdf_set_statement_handler("my_statement_handler");
$rdf-
$rdf->rdf_set_base($base);
$done=false;
while(!$done)
{
 $buf = fread($input, 512);
 $done = feof($input);
 if (! $rdf->rdf_parse($buf, strlen($buf), feof($input)))
 {
 die("An error was detected while parsing may be the document is not
well-formed");
 }
}
/* close file. */
fclose($input);
$rdf->rdf_parser_free();
printf("Total statements: ". $statements);

If you are familiar with the XML parsing functions of PHP you'll find the above code easy
to understand.

Note that we parse the RDF document using 512 byte chunks, we can define the buffer size
as we want (we control how we read the RDF document). Note that this allows us to parse
really huge RDF documents cosuming a constant amount of memory that is a good
advantage to prevent a server crash if our script parses huge files.

So we have to define an statement handler, this is an example:

function my_statement_handler(
 &$user_data,
 $subject_type,
 $subject,
 $predicate,
 $ordinal,
 $object_type,
 $object,
 $xml_lang)

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 6

{
 //$statements = $user_data;
 ++$user_data;
 printf("ordinal($ordinal) triple(");
 switch($subject_type)
 {
 case RDF_SUBJECT_TYPE_URI:
 printf("\"%s\"", $subject);
 break;
 case RDF_SUBJECT_TYPE_DISTRIBUTED:
 printf("distributed(\"%s\")", $subject);
 break;
 case RDF_SUBJECT_TYPE_PREFIX:
 printf("prefix(\"%s\")", $subject);
 break;
 case RDF_SUBJECT_TYPE_ANONYMOUS:
 printf("anonymous(\"%s\")", $subject);
 break;
 }

 printf(", \"%s\", ", $predicate);

 switch($object_type)
 {
 case RDF_OBJECT_TYPE_RESOURCE:
 printf("\"%s\"", $object);
 break;
 case RDF_OBJECT_TYPE_LITERAL:
 printf("literal(\"%s\")", $object);
 break; case RDF_OBJECT_TYPE_XML:
 printf("XML");
 break;
 }

 printf(")
\n");
}

The handler receives several paramenters, let's see each one:

• user_data: This is a PHP variable set with rdf_set_user_data, all the rdf parser
handlers will receive this variable and you can do whatever you want with it. You
can ignore for example if you don't need it. In our example we passed a $statements
variable and we use it to count the number of statements in the RDF document.

• subject_type: The subject type of the RDF statement, can be one of the following

values:
o RDF_SUBJECT_TYPE_URI
o RDF_SUBJECT_TYPE_DISTRIBUTED
o RDF_SUBJECT_TYPE_PREFIX
o RDF_SUBJECT_TYPE_ANONYMOUS

We are going to see what each subject_type means later in this tutorial.

• subject: The subject of the RDF statement

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 7

• predicate: The predicate of the RDF statement

• object_type: The object type of the RDF statement, can be one of the following

values:
o RDF_OBJECT_TYPE_RESOURCE
o RDF_OBJECT_TYPE_LITERAL
o RDF_OBJECT_TYPE_XML

• object: The object value of the RDF statement.

• ordinal: If the statement is a member of a collection this argument has the ordinal

position of the member in the collection

• xml_lang: The value of the xml_lang attribute if set.

There're other handlers that can be set but they are optional, we can parse rdf files using
just the statement handler, we'll describe the other handlers later in this tutorial.

Simple statements

The rdfdump.php script let's you parse a RDF document outputting the statements as they
are found. We'll use the script to parse and see how to process several examples as we
explain the RDF syntax.

If we use our rdfdump.php script to parse the presented document (example1.rdf) we get
the folllowing output:

ordinal(0) triple("http://www.w3.org/Home/Lassila", "http://description.org/schema/Creator", literal("Ora Lassila"))
Total statements: 1

So we can see that the parser returns "http://www.w3.org/Home/Lassila" as the subject and
that it is a SUBJECT_TYPE_URI, the predicate is "http://description.org/schema/Creator"
and the object is "Ora Lassila", being the object_type: OBJECT_TYPE_LITERAL

Statement 1
subject http://www.w3.org/Home/Lassila
subject_type SUBJECT_TYPE_URI
predicate http://description.org/schema/Creator
object Ora Lassila
object_type OBJECT_TYPE_LITERAL

Using the default namespace

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 8

We can also write the same using the default namespace for RDF elements:

<?xml version="1.0"?>
<RDF
 xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
 <Description about="http://www.w3.org/Home/Lassila">
 <s:Creator>Ora Lassila</s:Creator>
 </Description>
</RDF>

This is example1b.rdf and the parser produces the same result.

Properties as attributes

RDF also allows an abbreviated syntax where properties can be written as XML attributes:

<?xml version="1.0"?>
<RDF
 xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
 <Description about="http://www.w3.org/Home/Lassila"
 s:Creator="Ora Lassila" />

</RDF>

This is example1c.rdf and the parser again produces exactly the same result.

This is an example with more than one property:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
 <rdf:Description about="http://www.w3.org">
 <s:Publisher>World Wide Web Consortium</s:Publisher>
 <s:Title>W3C Home Page</s:Title>
 <s:Date>1998-10-03T02:27</s:Date>
 </rdf:Description>
</rdf:RDF>

The parser will produce 3 statements. The baove document is equivalent to example2b.rdf:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
 <rdf:Description about="http://www.w3.org"
 s:Publisher="World Wide Web Consortium"
 s:Title="W3C Home Page"
 s:Date="1998-10-03T02:27"/>
</rdf:RDF>

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 9

Resources as property values

In the examples we've seen so far property values (objects) were represented with string
literals. But we can also use a "resource" as the value of a resource property, example:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
 <rdf:Description about="http://www.w3.org/Home/Lassila">
 <s:Creator rdf:resource="http://www.w3.org/staffId/85740"/>
 </rdf:Description>

 <rdf:Description about="http://www.w3.org/staffId/85740">
 <s:Name>Ora Lassila</s:Name>
 <s:Email>lassila@w3.org</s:Email>
 </rdf:Description>
</rdf:RDF>

This is example3.rdf, you can see that the "creator" of the
"http://www.w3.org/Home/Lassila" resource is another resource, the attribute resource is
used in the XML RDF notation to indicate that a property value is a resource. Then we
describe some properties about that resource.

The RDF Dump produces the following output:

ordinal(0) triple("http://www.w3.org/Home/Lassila", "http://description.org/schema/Creator",
"http://www.w3.org/staffId/85740")
ordinal(0) triple("http://www.w3.org/staffId/85740", "http://description.org/schema/Name", literal("Ora Lassila"))
ordinal(0) triple("http://www.w3.org/staffId/85740", "http://description.org/schema/Email", literal("lassila@w3.org"))
Total statements: 3

The object_type of the first statement is RDF_OBJECT_TYPE_RESOURCE indicatin g
that the object is a resource that may be described in the same RDF document or not.

This is what the parser produces

Statement 1
subject http://www.w3.org/Home/Lassila
subject_type RDF_SUBJECT_TYPE_URI
predicate http://description.org/schema/Creator
object Ora Lassila
object_type RDF_OBJECT_TYPE_RESOURCE

Statement 2
subject http://www.w3.org/staffId/85740
subject_type RDF_SUBJECT_TYPE_URI

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 10

predicate http://description.org/schema/Name
object Ora Lassila
object_type RDF_OBJECT_TYPE_LITERAL

Statement 3
subject http://www.w3.org/staffId/85740
subject_type RDF_SUBJECT_TYPE_URI
predicate http://description.org/schema/Email
object lassila@w3.org
object_type RDF_OBJECT_TYPE_LITERAL

Inner description elements

example3b.rdf shows the same document using another syntax form:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
 <rdf:Description about="http://www.w3.org/Home/Lassila">
 <s:Creator>
 <rdf:Description about="http://www.w3.org/staffId/85740">
 <s:Name>Ora Lassila</s:Name>
 <s:Email>lassila@w3.org</s:Email>
 </rdf:Description>
 </s:Creator>
 </rdf:Description>
</rdf:RDF>

In this format there's a inner Description element for the "Creator" property so the value of
the creator property is the resource indicated by the "about" attribute in the inner
Description element. The parser as you can guess produces the same output.

Properties as attributes

Using attributes to describe properties we can write the same as:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
<rdf:Description about="http://www.w3.org/Home/Lassila">
 <s:Creator rdf:resource="http://www.w3.org/staffId/85740"
 s:Name="Ora Lassila"
 s:Email="lassila@w3.org" />
 </rdf:Description>

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 11

</rdf:RDF>

The above example is example3c.rdf

Containers

Frequently you have to refer to a collection of resources, for example you may want to say
that a course is attended by "n" students. The RDF model defines "containers" to group
resources. There're 3 different containers:

Bag:

An unordered list of resources or literals. Bags are used to declare that a property has
multiple values and that there is no significance to the order in which the values are given.
Bag might be used to give a list of part numbers where the order of processing the parts
does not matter. Duplicate values are permitted.

Sequence:

An ordered list of resources or literals. Sequence is used to declare that a property has
multiple values and that the order of the values is significant. Sequence might be used, for
example, to preserve an alphabetical ordering of values. Duplicate values are permitted.

Alternative:

A list of resources or literals that represent alternatives for the (single) value of a property.
Alternative might be used to provide alternative language translations for the title of a
work, or to provide a list of Internet mirror sites at which a resource might be found. An
application using a property whose value is an Alternative collection is aware that it can
choose any one of the items in the list as appropriate.

A collection is represented by a resource where the "type" property indicates that the
resource is a collection, type may be "Bag", "Seq" or "Alt". Collection members are
represented as properties named "_1", "_2", etc.

For example the following statement defines a collection:

The students in course 6.001 are Amy, Tim, John, Mary, and Sue.

And the statement can be modeled as a graph in the form:

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 12

And this is the XML RDF document representing the above graph:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
<rdf:Description about="http://mycollege.edu/courses/6.001">
 <s:students>
 <rdf:Bag>
 <rdf:li resource="http://mycollege.edu/students/Amy"/>
 <rdf:li resource="http://mycollege.edu/students/Tim"/>
 <rdf:li resource="http://mycollege.edu/students/John"/>
 <rdf:li resource="http://mycollege.edu/students/Mary"/>
 <rdf:li resource="http://mycollege.edu/students/Sue"/>
 </rdf:Bag>
 </s:students>
 </rdf:Description>
</rdf:RDF>

Note that there're some "anonymous" resources such as the rdf:Bag and the rdf:li
elements.An anonymous resource has subject_type = SUBJECT_TYPE_ANONYMOUS
The document presented is example4.rdf and the rdfdump.php script dumps the following:

ordinal(0) triple(anonymous("http://luigi.melpomenia.com.ar/example4.rdf#genid1)", "http://www.w3.org/1999/02/22-rdf-
syntax-ns#type", "http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag")
ordinal(0) triple("http://mycollege.edu/courses/6.001", "http://description.org/schema/students",
"http://luigi.melpomenia.com.ar/example4.rdf#genid1")
ordinal(1) triple(anonymous("http://luigi.melpomenia.com.ar/example4.rdf#genid1)", "http://www.w3.org/1999/02/22-rdf-

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 13

syntax-ns#_1", "http://mycollege.edu/students/Amy")
ordinal(2) triple(anonymous("http://luigi.melpomenia.com.ar/example4.rdf#genid1)", "http://www.w3.org/1999/02/22-rdf-
syntax-ns#_2", "http://mycollege.edu/students/Tim")
ordinal(3) triple(anonymous("http://luigi.melpomenia.com.ar/example4.rdf#genid1)", "http://www.w3.org/1999/02/22-rdf-
syntax-ns#_3", "http://mycollege.edu/students/John")
ordinal(4) triple(anonymous("http://luigi.melpomenia.com.ar/example4.rdf#genid1)", "http://www.w3.org/1999/02/22-rdf-
syntax-ns#_4", "http://mycollege.edu/students/Mary")
ordinal(5) triple(anonymous("http://luigi.melpomenia.com.ar/example4.rdf#genid1)", "http://www.w3.org/1999/02/22-rdf-
syntax-ns#_5", "http://mycollege.edu/students/Sue")
Total statements: 7

Note how the ordinal argument can be used to obtain the number of each element in a
collection. Let's see each statement:

The first statement says that the anonymous resource
http://luigi.melpomenia.com.ar/example4.rdf#genid1 is of type "Bag"

Then we say that the resource http://mycollege.edu/courses/6.001 has "students" defined by
the resource http://luigi.melpomenia.com.ar/example4.rdf#genid1 (The anonymous
resource introduced before)

Then we present properties _1,_2,_3,_4 and _5 for the anonymous resource (The Bag)
indicating the students that form the course.

So we have a "course" resource that has a "students" property pointing to an anonymous
resource with type "Bag", and then we define _1.._5 properties for that anonymous
resource.

RDF_SUBJECT_TYPE_ANONYMOUS will be the "subject_type" for a statement where
the subject is anonymous. Note that when a subject is anonymous the parser creates an URI
to identy it using the base URI and a "#genidX" locator.

example5.rdf shows a collection of type "Alt":

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
 <rdf:Description about="http://x.org/packages/X11">
 <s:DistributionSite>
 <rdf:Alt>
 <rdf:li resource="ftp://ftp.x.org"/>
 <rdf:li resource="ftp://ftp.cs.purdue.edu"/>
 <rdf:li resource="ftp://ftp.eu.net"/>
 </rdf:Alt>
 </s:DistributionSite>
 </rdf:Description>
</rdf:RDF>

As you can see the document describes 3 alternate sites that can be used to obtain the
distribution of a package.

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 14

This is the output of the rdfdump.php script using our parser:

ordinal(0) triple(anonymous("http://luigi.melpomenia.com.ar/example5.rdf#genid1"), "http://www.w3.org/1999/02/22-rdf-
syntax-ns#type", "http://www.w3.org/1999/02/22-rdf-syntax-ns#Alt")
ordinal(0) triple("http://x.org/packages/X11", "http://description.org/schema/DistributionSite",
"http://luigi.melpomenia.com.ar/example5.rdf#genid1")
ordinal(1) triple(anonymous("http://luigi.melpomenia.com.ar/example5.rdf#genid1"), "http://www.w3.org/1999/02/22-rdf-
syntax-ns#_1", "ftp://ftp.x.org")
ordinal(2) triple(anonymous("http://luigi.melpomenia.com.ar/example5.rdf#genid1"), "http://www.w3.org/1999/02/22-rdf-
syntax-ns#_2", "ftp://ftp.cs.purdue.edu")
ordinal(3) triple(anonymous("http://luigi.melpomenia.com.ar/example5.rdf#genid1"), "http://www.w3.org/1999/02/22-rdf-
syntax-ns#_3", "ftp://ftp.eu.net")
Total statements: 5

Statements about members of a container

When we define a collection of type "Bag", "Seq" or "Alt" we create a new resource, if we
use that resource in an RDf "Description" element we'll be describing properties that affect
the whole collection. Some times we want to say something about each member of the
collection instead of referring to the collection.

For example:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
<rdf:Bag ID="pages">
 <rdf:li resource="http://foo.org/foo.html" />
 <rdf:li resource="http://bar.org/bar.html" />
</rdf:Bag>

<rdf:Description about="#pages">
 <s:Creator>Ora Lassila</s:Creator>
</rdf:Description>
</rdf:RDF>

Says that "Ora Lassila" is the creator of the Bag "pages" but nothing is said about the
creator of each page in the collection.

Just in case you want to check the document is example6.rdf and the output of the rdfdump
program is:

ordinal(0) triple("http://luigi.melpomenia.com.ar/example6.rdf#pages", "http://www.w3.org/1999/02/22-rdf-syntax-
ns#type", "http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag")
ordinal(1) triple("http://luigi.melpomenia.com.ar/example6.rdf#pages", "http://www.w3.org/1999/02/22-rdf-syntax-ns#_1",
"http://foo.org/foo.html")
ordinal(2) triple("http://luigi.melpomenia.com.ar/example6.rdf#pages", "http://www.w3.org/1999/02/22-rdf-syntax-ns#_2",
"http://bar.org/bar.html")
ordinal(0) triple("http://luigi.melpomenia.com.ar/example6.rdf#pages", "http://description.org/schema/Creator", literal("Ora
Lassila"))
Total statements: 4

RDF defines the "aboutEach" attribute to say something about each member of a collection.

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 15

Example:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
<rdf:Bag ID="pages">
 <rdf:li resource="http://foo.org/foo.html" />
 <rdf:li resource="http://bar.org/bar.html" />
</rdf:Bag>

<rdf:Description aboutEach="#pages">
 <s:Creator>Ora Lassila</s:Creator>
</rdf:Description>
</rdf:RDF>

This is example7.rdf now the parser produces the following:

ordinal(0) triple("http://luigi.melpomenia.com.ar/example7.rdf#pages", "http://www.w3.org/1999/02/22-rdf-syntax-
ns#type", "http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag")
ordinal(1) triple("http://luigi.melpomenia.com.ar/example7.rdf#pages", "http://www.w3.org/1999/02/22-rdf-syntax-ns#_1",
"http://foo.org/foo.html")
ordinal(2) triple("http://luigi.melpomenia.com.ar/example7.rdf#pages", "http://www.w3.org/1999/02/22-rdf-syntax-ns#_2",
"http://bar.org/bar.html")
ordinal(0) triple(distributed("#pages"), "http://description.org/schema/Creator", literal("Ora Lassila"))
Total statements: 4

Note that the subject_type of the fourth statement is
RDF_SUBJECT_TYPE_DISTRIBUTED indicating that the subject is each memeber of the
resource referred by the "#pages" ID, you can the process what that means in your
application.

Containers defined by an URI pattern:

There's another distributive attribute defined by RDF, let's take a look at the following RDF
document:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
<rdf:Description about="http://foo.org/doc/page1">
 <s:Copyright>1998, The Foo Organization</s:Copyright>
</rdf:Description>
<rdf:Description about="http://foo.org/doc/page2">
 <s:Copyright>1998, The Foo Organization</s:Copyright>
</rdf:Description>
</rdf:RDF>

We know that the document describes the "copyright" property of two resources:
http://foo.org/doc/page2 and http://foo.org/doc/page1, we may want for example to define a

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 16

property for all the resources under http://foo.org/doc/ and we may find that writing a lot of
statements is hard. That's why RDF defines the "aboutEachPrefix" attribute that let's you
define properties for all resources descendant of a URI pattern. For example:

<rdf:Description aboutEachPrefix="http://foo.org/doc">
 <s:Copyright>1998, The Foo Organization</s:Copyright>
</rdf:Description>

This defines that all resources descendant of http://foo.org/doc will have a Copyright
property with value "1998, The Foo Organization".

An example is example8.rdf:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
<rdf:Description aboutEachPrefix="http://foo.org/doc">
 <s:Copyright>1998, The Foo Organization</s:Copyright>
</rdf:Description>

</rdf:RDF>

And the parser produces:

ordinal(0) triple(prefix("http://foo.org/doc"), "http://description.org/schema/Copyright", literal("1998, The Foo
Organization"))
Total statements: 1

Note that the subject_type of the statement is RDF_SUBJECT_TYPE_PREFIX, thus
indicating that this property should be applied to all the resources under the presented
prefix.

Statements about statements.

When we say something about a resource we use a statement, but we may want to say
something about a statement, for example:

Ralph Swick says that Ora Lassila is the creator of the resource
http://www.w3.org/Home/Lassila.

In order to express this in RDF we have to model the statement as a resource, we can do it
using what is called a "reified statement"

 <rdf:Description>
 <rdf:subject resource="http://www.w3.org/Home/Lassila" />
 <rdf:predicate resource="http://description.org/schema/Creator" />
 <rdf:object>Ora Lassila</rdf:object>

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 17

 <rdf:type resource="http://www.w3.org/1999/02/22-rdf-syntax-
ns#Statement" />
 <a:attributedTo>Ralph Swick</a:attributedTo>
 </rdf:Description>

This is a "reified" statement modeled as a resource note that we define the subject, prediate
and object of the statement, then we define the "type"as a resource. and we add a property
indicating that the statement was attributed to Ralph Swick.

This is the result of the parser:

ordinal() triple(anonymous("http://luigi.melpomenia.com.ar/example9.rdf#genid1"), "http://www.w3.org/1999/02/22-rdf-
syntax-ns#subject", "http://www.w3.org/Home/Lassila")
ordinal() triple(anonymous("http://luigi.melpomenia.com.ar/example9.rdf#genid1"), "http://www.w3.org/1999/02/22-rdf-
syntax-ns#predicate", "http://description.org/schema/Creator")
ordinal() triple(anonymous("http://luigi.melpomenia.com.ar/example9.rdf#genid1"), "http://www.w3.org/1999/02/22-rdf-
syntax-ns#object", literal("Ora Lassila"))
ordinal() triple(anonymous("http://luigi.melpomenia.com.ar/example9.rdf#genid1"), "http://www.w3.org/1999/02/22-rdf-
syntax-ns#type", "http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement")
ordinal(0) triple(anonymous("http://luigi.melpomenia.com.ar/example9.rdf#genid1"), "a:attributedTo", literal("Ralph
Swick"))
Total statements: 5

Again there's an anonymous resource with properties "subject", "predicate","object" and
"type" as well as a statement about that resource. When you see a statement where the "
http://www.w3.org/1999/02/22-rdf-syntax-ns#type " property is "
http://www.w3.org/1999/02/22-rdf-syntax-ns#type" you should know that the resource is in
fact, a statement and process it accordingly.

More handlers

The rdf parser class allows other handlers to be set besides the statement_handler.

The Warning Handler

Use $rdf->rdf_set_warning_handler($handler_name); to set it.
The handler receives just one parameter: $message ej:

$rdf->rdf_set_warning_handler("my_warning_handler");
function my_warning_handler($message) {
 ...
}

This handler will be called whenever the parser finds an error in an RDF document, teh
document may be well formed but have some form of invalid RDF syntax that the parser
reports calling this handler. The message describes the error detected by the parser.

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 18

The element and character_data handlers.

RDF can be "embedded" inside other XML vocabularies, in such a case you may want to
parse not only RDF elements but the whole XML document. The rdf parser class let's you
define handlers for non-RDF elements as well as non-RDF data inside elements:

$rdf->set_element_handler($start_handler_name,$end_handler_name);

The start handler name receives &$user_data, $name and $attributes. $user_data is the
user_data if set, name is the name of the non-rdf element and attributes is an asociative
array with the XML attributes.

The end handler receives &$user_data and $name, being $name the name of the ending
non-RDF element.

Finally the character_data_handler is set using:

$rdf->rdf_set_character_data_handler($handler_name);

And the handler receives &$user_data and $data being $data the characters found inside a
non-RDF element.

These handlers are almost identical to the handlers that the XML parser of PHP uses for
generic XML files.

Summary

We've seen a broad overview of the XML RDF syntax and how to process RDF documents
using the Rdf_parse class, a port of the repat parser in PHP. As we've seen the class can
parse RDF documents following all the syntactic variations that RDF allows producing
events that can be processed in your application. This class allows you to independize your
application from the different RDF syntaxes that can be used to convey RDF information,
using this class you can write all sort of applications using RDF using PHP.
Since the class is based on repat the code is compact and the class is fast and quite solid.

Copyright Information:
The "C" version of the RDF repat parser was created by Jason Williams.
The PHP version of repat and the Rdf_parser class using it were coded by Luis Argerich.

Parsing RDF documents using PHP

Parsing RDF documents using PHP Page: 19

Resources

• The RDF home page at the W3C : http://www.w3.org/RDF/
• The XML syntax for RDF specification: http://www.w3.org/TR/1999/REC-rdf-

syntax-19990222/
• The "C" version of Repat by Jason diammond: http://injektilo.org/rdf/repat.html
• The "PHP" version of repat: class_rdf_parse.php:

http://phpxmlclasses.sourceforge.net/

